Fortsätt till huvudinnehåll

[VAWT] A DIY method for determining the BLDC machine constant


Not all manufacturers publish data of the machine constant for BLDC machines, relating the produces torque to current through the machine. This constant is usually called machine constant too. In the wind turbine project we used a hub-BLDC machine intended as a hub-motor for bicycles as a generator. Neither the manufacturer nor the supplier could provide this machine constant. We didn't have access too a dynamometer for testing it neither. Furthermore, the hub BLDC wouldn't likely fit into most dynamometers anyway.

Method overview 


Therefore I developed a method to determine this constant that is fairly economical and doesn't require much specialized equipment. I started to dig deeper and deeper into the grounds of knowledge, and the what started mostly as extensive self note became something more like a non-revised report.

Read the Step-by-step instruction summary here

Read the full report here

Any comments or feedback regarding the report content is appreciated. Here is a commentable version of the report, without pictures. You can also submit a commend via this post. 

Kommentarer

Populära inlägg i den här bloggen

[VAWT] Plausible improvements of the Savonius windmill

Cut a barrel in half, mount it on a shaft and you have a windturbine. If the barrel is used, then what else probably would end up on a scrap heap is instead used for converting renewable energy. Simplicity and low cost makes this an attractive option especially for societies with limited economy and a malfunctioning or non existing electric grid. Small off-grid electrical networks can be built and people who perhaps most needs electricity get that. Isn't that neat? Savonius (from http://solarvan.co.uk/savonius) An overlooked potential? The Savonius though has a widespread reputation of having low effiency and is often dismissed as a credible option around forums and in formal litterature. However, when looking at the graph below from a publication Wortman did 1983, the effiency can be realtively high provided that the TSR(Tip-to-Wind-Speed-Ratio) is held at a correct value and the windmill should work quite nicely. In practice this could probably be done by controlling t

The heating system

One of my former projects was the design and practical realization of an automated wood fired heating system. Two key characteristics of the project were the reuse of junkyard bargains and realization of electronic system starting from component level. Budget was kept low. The system is now warming a house situated on a farm on the Swedish countryside.  I for sure have never done a project spanning so many different categories of work. In the end I had done manual metal work and welding, plumbing, electrical installation, creation of control- and calculation algorithms, circuit design and programming to name some. A box on the upper floor of the house with an Atmega328 microprocessor controls the whole heating  system.   Here is a video summary of the project: Systems furnace is a Braland 21 from http://www.braland.se The control system that is now up and running can among other things monitor 16 different temperatures, control all the systems pumps and do diffe

[VAWT] Affordable wind measurements

The shop Clas Ohlsson in Sweden sells a spare anemometer for the   WH-1080 weather station  for a hobbyist friendly price around 15 euros. This anemometer can probably be found in other countries too. The WH-1080 spare anemometer Here   you can read about how to use this anemometer together with an Arduino or any other embedded system.  As we couldn't find any data on the characteristics of this sensor, we did our own calibration in a wind tunnel and the results are presented in the report above. This anemometer was used in a Bachelors Thesis project related to the devlopment of optimization of the Savonius Turbine, here tagged [VAWT].